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Abstract. In this paper, we prove a sample-path comparison principle for the nonlinear stochastic fractional heat equation on R

with measure-valued initial data. We give quantitative estimates about how close to zero the solution can be. These results extend
Mueller’s comparison principle on the stochastic heat equation to allow more general initial data such as the (Dirac) delta measure
and measures with heavier tails than linear exponential growth at ±∞. These results generalize a recent work by Moreno Flores
(Ann. Probab. 42 (2014) 1635–1643), who proves the strict positivity of the solution to the stochastic heat equation with the delta
initial data. As one application, we establish the full intermittency for the equation. As an intermediate step, we prove the Hölder
regularity of the solution starting from measure-valued initial data, which generalizes, in some sense, a recent work by Chen and
Dalang (Stoch. Partial Differ. Equ. Anal. Comput. 2 (2014) 316–352).

Résumé. Dans ce papier, nous montrons un principe de comparaison trajectoriel pour l’équation de la chaleur stochastique, frac-
tionnaire, nonlinéaire sur R avec une donnée initiale à valeur mesure. Nous donnons des estimations quantitatives de la proximité
à zéro d’une solution. Ces résultats étendent le principe de comparaison de Mueller pour l’équation de la chaleur stochastique et
permettent de considérer des données initiales plus générales telles que des mesures de Dirac et des mesures à queue plus lourde
qu’une croissance exponentielle linéaire en ±∞. Ces résultats généralisent un travail récent par Moreno Flores (Ann. Probab. 42
(2014) 1635–1643), qui a prouvé la stricte positivité de l’équation de la chaleur stochastique partant d’un Dirac. Comme applica-
tion, nous établissons la complète intermittence pour l’équation. Dans une étape intermédiaire, nous prouvons la régularité Hölder
de solutions partant d’une donnée initiale à valeur mesure ce qui généralise, dans un certain sens, un travail récent de Chen and
Dalang (Stoch. Partial Differ. Equ. Anal. Comput. 2 (2014) 316–352).
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1. Introduction

The comparison principle for differential equations tells us whether two solutions starting from two distinct initial
conditions can compare with each other when the initial conditions are comparable. The sample-path comparison
principle for stochastic differential equations (SDEs) and also for stochastic partial differential equations (SPDEs)
have been studied extensively; see e.g. [17, Chapter VI] and [30, Section V.40] for SDEs, and [2,21,24,26,31] for
SPDEs. A related problem is the stochastic comparison principle, which is of the form:

E
(
�(ut )

)≤ E
(
�(vt )

)
, for all t > 0,
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where {ut (x)} and {vt (x)} solve SDEs or SPDEs, with the same initial data but comparable drift and diffusion coeffi-
cients. One looks for as large a class of functions � as possible. See [12,16,18,19].

In this paper, we will focus on the pathwise comparison principle for the following nonlinear stochastic fractional
heat equation:{

( ∂
∂t

− xD
a
δ )u(t, x) = ρ(u(t, x))Ẇ (t, x), t ∈R

∗+ := ]0,+∞[, x ∈ R,

u(0, ·) = μ(·), (1.1)

where a ∈]1,2] is the order of the fractional differential operator xD
a
δ and δ (|δ| ≤ 2 − a) is its skewness, Ẇ is the

space–time white noise on R+ × R, μ denotes the initial data (a measure), and the function ρ : R �→ R is Lipschitz
continuous. Throughout this paper, we assume that a and δ are fixed constants such that

a ∈]1,2] and |δ| ≤ 2 − a, (1.2)

unless we state otherwise (see Corollary 1.2).
When a = 2 and δ = 0, the fractional operator xD

a
δ reduces to the Laplacian on R, which is the infinitesimal oper-

ator for a Brownian motion. On the other hand, when a ∈]1,2[ and |δ| ≤ 2 − a, the operator xD
a
δ is the infinitesimal

generator of an a-stable process with skewness δ. In particular, xD
a
0 = −(−�)a/2. This fractional Laplace operator

has been paid many attentions for several decades because of its non-local property, and thus it is widely used in many
areas such as physics, biology, and finance to model non-local (anomalous) diffusions. We refer to [23,32,34] for more
details on these fractional operator and the related stable random variables.

The existence and uniqueness of a random field solution to (1.1) have been studied in [7,9,11,13–15]. In particular,
the existence, uniqueness, and moment estimates under measure-valued initial data have been established recently in
[7,9,11].

We now specify the weak and strong comparison principles. Let u1(t, x) and u2(t, x) be two solutions to (1.1)
with initial measures μ1 and μ2, respectively. We say that (1.1) satisfies the weak comparison principle if u1(t, x) ≤
u2(t, x) for all t > 0 and x ∈ R, a.s., whenever μ1 ≤ μ2 (i.e., μ2 − μ1 is a nonnegative measure). And the equation
(1.1) is said to satisfy the strong comparison principle if u1(t, x) < u2(t, x) for all t > 0 and x ∈ R, a.s., whenever
μ1 < μ2 (i.e., the measure μ2 − μ1 is nonnegative and nonvanishing). Note that the stochastic comparison principle
for (1.1) with �(z) = |z|k for k ≥ 2 (so-called the moment comparison principle) has been shown lately by Joseph,
Khoshnevisan and Mueller [19].

When a = 2, the equation (1.1) reduces to the stochastic heat equation (SHE). The special case when ρ(u) = λu

for some constant λ 	= 0 is called the parabolic Anderson model; see [4,5,15]. The weak comparison principle can be
derived readily from the Feynman–Kac formula; see [4].2 But the proof of the strong comparison principle requires
some more efforts. This question is important because, e.g., the Hopf–Cole solution to the famous Kardar–Parisi–
Zhang equation (KPZ) [20] is the logarithm of the solution to the SHE.

For general ρ which is Lipschitz continuous, we do not have the Feynman–Kac formula. The weak comparison
principle is no longer obvious. In this case, Mueller [26] proves the strong comparison principle for the SHE on
R for the initial data being absolutely continuous with respect to the Lebesgue measure with a bounded density
function. Mueller uses the discrete Laplacian and discretizes time to approximate the solution to the SHE, which
results in the weak comparison principle. He then obtains the strong comparison principle by employing some large
deviation estimates for the stochastic integral part of the solution. Using Mueller’s large deviation estimates, Shiga
[31] gives another proof of the strong comparison principle for the initial data being a so-called Ctem function, that is,
a continuous function with both tails growing no faster than eλ|x| for all λ > 0. He outlines a different approach for
proving the weak comparison principle in the Appendix of his paper: smooth both the Laplace operator and the white
noise so that one can apply the comparison principle for SDEs. We will follow his approach in our proof for the weak
comparison principle.

In both Mueller [26] and Shiga [31], the initial data should be functions. One natural question is whether the
solution remains strictly positive if we run the system (1.1) starting from a measure, such as the Dirac delta measure.

2Once the noise is mollified, there is a Feynman–Kac formula for the solution (see (2.17) in [4]). Hence, the solution to the mollified equation is
nonnegative. Then by passing to the limit, the nonnegativity is preserved.
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Using the polymer model and following a convergence result by Alberts, Khanin and Quastel [1], Moreno Flores [25]
recently proved the strict positivity result for the Anderson model (i.e., the case where a = 2 and ρ(u) = λu) with the
delta initial data. Our results below generalize their result to the stochastic fractional heat equation (i.e., a ∈]1,2]),
and moreover, we consider general measure-valued initial data and allow ρ to be any Lipschitz continuous function.

Recently, Conus, Joseph and Khoshnevisan [10] give a more precise estimate on the strong comparison principle
for the SHE. When the initial data is the Lebesgue measure, they prove that for every t > 0, there exist two finite
constants A > 0 and B > 0 such that for all ε ∈]0,1[ and x ∈ R,

P
(
u(t, x) < ε

)≤ A exp
(−B

[∣∣log(ε)
∣∣ · log

(∣∣log(ε)
∣∣)]3/2)

. (1.3)

Clearly, this result implies the strong comparison principle. In [28], Mueller and Nualart prove that when a = 2 and
the space domain is [0,1] with the zero Dirichlet boundary condition, for some constants C0 and C1,

P
(
u(t, x) < ε

)≤ C0 exp
(−C1| log ε|3/2−ε

)
. (1.4)

We will generalize these results to the stochastic fractional heat equation (1.1) following [10]. This shows how close
to zero the solution to (1.1) can be.

In order to state our results, we need some notation. Let M(R) be the set of signed (regular) Borel measures on R.
From the Jordan decomposition, μ = μ+ −μ− such that μ± are two nonnegative Borel measures with disjoint support
and denote |μ| = μ+ + μ−. As proved in [9], the admissible initial data for (1.1) is

Ma(R) :=
{
μ ∈ M(R) : sup

y∈R

∫
R

|μ|(dx)
1

1 + |y − x|1+a
< +∞

}
, for a ∈]1,2].

Moreover, when a = 2, the admissible initial data can be more general than M2(R): It can be any measures from the
following set

MH (R) :=
{
μ ∈M(R) :

∫
R

e−cx2 |μ|(dx) < +∞, for all c > 0

}
;

see [7]. Clearly, Ma(R) ⊆ MH (R). In the following, a “+” sign in the subscript means the subset of nonnegative
measures. An important example in Ma,+(R) is the Dirac delta measure. For simplicity, denote

M∗
a(R) :=

{
Ma(R) if 1 < a < 2,
MH (R) if a = 2.

We will follow Shiga’s arguments [31] to prove the following weak comparison principle. This result allows more
general initial conditions than those in [26] and [31]. Recall that for two measures μ1 and μ2, if μ := μ1 − μ2 is a
nonnegative measure, then μ1 ≥ μ2. Moreover, if μ 	= 0, then μ1 > μ2.

Theorem 1.1 (Weak comparison principle). Let u1(t, x) and u2(t, x) be two solutions to (1.1) with the initial data
μ1 and μ2 ∈M∗

a(R), respectively. If μ1 ≤ μ2, then

P
(
u1(t, x) ≤ u2(t, x), for all t ≥ 0 and x ∈ R

)= 1. (1.5)

Here is one example. Let δz be the Dirac delta function with unit mass at x = z. Suppose that μ1 = δ0 and μ2 = 2δ0.
Then u1(t, x) ≤ u2(t, x) for all t > 0 and x ∈R, a.s.

As a direct consequence of Theorem 1.1, one can turn weak intermittency statements in [9,15] into the full inter-
mittency. More precisely, define the upper and lower Lyapunov exponents of order p by

mp(x) := lim sup
t→+∞

1

t
logE

(∣∣u(t, x)
∣∣p), mp(x) := lim inf

t→+∞
1

t
logE

(∣∣u(t, x)
∣∣p), (1.6)

for all p ≥ 2 and x ∈R. According to Carmona and Molchanov [5, Definition III.1.1, on p. 55], u is fully intermittent
if infx∈R m2(x) > 0 and m1(x) ≡ 0 for all x ∈ R.
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Corollary 1.2. Suppose that a ∈]1,2[, |δ| < 2 − a (strict inequality), μ ∈ Ma,+(R), and ρ satisfies that for some
constants lρ > 0 and ς ≥ 0, ρ(x)2 ≥ l2ρ(ς2 + x2) for all x ∈ R. If either μ 	= 0 or ς 	= 0, then the solution to (1.1) is
fully intermittent.

Proof. By [9, Theorem 3.4], infx∈R m2(x) > 0. By Theorem 1.1, u(t, x) ≥ 0 a.s. and so, E[|u(t, x)|] = E[u(t, x)] =
J0(t, x) (see (2.3)). Therefore, m1(x) ≡ 0 for all x ∈ R. �

We adapt both Mueller and Shiga’s arguments (see [26,31]) to prove the strong comparison principle (part (1) of
Theorem 1.4). In the proof of part (2) of Theorem 1.4, we adapt the stopping time arguments, akin to those by Mueller
and Nualart [28] and Conus, Joseph and Khoshnevisan [10]. In these proofs, following the idea of [10, Theorem 5.1],
we develop a large deviation result similar to that in [26] using the Kolmogorov continuity theorem.

Theorem 1.3 (Strong comparison principle). Let u1(t, x) and u2(t, x) be two solutions to (1.1) with the initial data
μ1 and μ2 ∈M∗

a(R), respectively. If μ1 < μ2, then

P
(
u1(t, x) < u2(t, x) for all t > 0 and x ∈R

)= 1.

The following theorem gives more precise information on the positivity of the solutions. Let supp(f ) denote the
support of function f , i.e., supp(f ) := {x ∈ R : f (x) 	= 0}.

Theorem 1.4 (Strict positivity). Suppose ρ(0) = 0 and let u(t, x) be the solution to (1.1) with the initial data μ ∈
M∗

a(R). Then we have the following two statements:

(1) If μ > 0, then for any compact set K ⊆ R
∗+ ×R, there exist finite constants A > 0 and B > 0 which only depend

on K such that for small enough ε > 0,

P
(

inf
(t,x)∈K

u(t, x) < ε
)

≤ A exp
(−B

∣∣log(ε)
∣∣1−1/a log

(∣∣log(ε)
∣∣)2−1/a)

. (1.7)

(2) If μ(dx) = f (x)dx with f ∈ C(R), f (x) ≥ 0 for all x ∈ R and supp(f ) 	= ∅, then for any compact set D ⊆
supp(f ) and any T > 0, there exist finite constants A > 0 and B > 0 which only depend on D and T such that
for all small enough ε > 0,

P
(

inf
(t,x)∈]0,T ]×D

u(t, x) < ε
)

≤ A exp
(−B

{∣∣log(ε)
∣∣ · log

(∣∣log(ε)
∣∣)}2−1/a)

. (1.8)

Theorem 1.4 shows that for all t > 0, the function x �→ u(t, x) does not have a compact support (see [26] and [27,
Section 6.3] for some other scenarios where the compact support property can be preserved). We also note that thanks
to Theorem 1.4, one can regard the solution u(t, x) to (1.1) as the density at location x of a continuous particle system
at time t , where particles move as independent a-stable processes but branch independently according to the noise
term; see [19].

Note that part (2) of Theorem 1.4 gives essentially the same rate as those in (1.3) and (1.4) when a = 2. For the
case μ = δ0, a = 2 and ρ(u) = λu, Moreno Flores gives a better bounds; see [25, Theorem 1(a)].

The next three theorems will be used in the proofs of the above theorems. Since they are interesting by themselves,
we list them below.

The first one, which is used in the proof of Theorem 1.1, says that we can approximate a solution to (1.1) starting
from μ ∈ M∗

a(R) by a solution to (1.1) starting from smooth initial conditions. Define

ψε(x) =
{1 if |x| ≤ 1/ε,

1 + 1/ε − |x| if 1/ε ≤ |x| ≤ 1 + 1/ε,
0 if |x| ≥ 1 + 1/ε.

(1.9)
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Theorem 1.5. Suppose that μ ∈ M∗
a(R). Let δGa(t, x) be the fundamental solution associated to (1.1) (see (2.1)

below). Let u(t, x) and uε(t, x) be the solutions to (1.1) starting from μ and ((μψε) ∗ δGa(ε, ·))(x), respectively.
Then

lim
ε→0

E
[∣∣u(t, x) − uε(t, x)

∣∣2]= 0, for all t > 0 and x ∈R.

The following theorem, which is used in the proof of Theorem 1.3, shows the sample-path regularity for the
solutions to (1.1). When the initial data has a bounded density, this has been proved in [14]. For general initial data,
the case where a = 2 is proved in [6]. The theorem below covers the cases where 1 < a < 2. We need some notation:
Given a subset K ⊆R+ ×R and positive constants β1, β2, denote by Cβ1,β2(K) the set of functions v : R+ ×R �→R

with the property that for each compact set D ⊆ K , there is a finite constant C such that for all (t, x) and (s, y) in D,∣∣v(t, x) − v(s, y)
∣∣≤ C

[|t − s|β1 + |x − y|β2
]
.

Denote

Cβ1−,β2−(D) :=
⋂

α1∈]0,β1[

⋂
α2∈]0,β2[

Cα1,α2(D).

Theorem 1.6. Let u(t, x) be the solution to (1.1) starting from μ ∈M∗
a(R). Then we have

u ∈ C(a−1)/(2a)−,(a−1)/2−
(
R

∗+ ×R
)
, a.s.

The last one, which is also used in the proof of Theorem 1.3, shows that the solution u(t, x) to (1.1) converges to
the initial measure μ in the weak sense as t → 0. The case when a = 2 is proved in [6, Proposition 3.4]. Let Cc(R)

be the set of continuous functions with compact support.

Theorem 1.7. Let u(t, x) be the solution to (1.1) starting from μ ∈M∗
a(R). Then,

lim
t→0

∫
R

u(t, x)φ(x)dx =
∫
R

φ(x)μ(dx) for all φ ∈ Cc(R) in L2(�);

see Section 2 for the probability space.

In the following, we first list some notation and preliminary results in Section 2. Then we prove Theorem 1.1 in
Section 3 with many technical lemmas proved in the Appendix. The proof of Theorem 1.3 is presented in Section 4,
Theorem 1.4 is proved in Section 5. Finally, the three Theorems 1.5, 1.6 and 1.7 are proved in Sections 6, 7, and 8,
respectively.

2. Notation and some preliminaries

The Green function associated to the problem (1.1) is

δGa(t, x) := F−1[exp
{
δψa(·)t

}]
(x) = 1

2π

∫
R

dξ exp
{
iξx − t |ξ |ae−iδπ sgn(ξ)/2}, (2.1)

where F−1 is the inverse Fourier transform and

δψa(ξ) = −|ξ |ae−iδπ sgn(ξ)/2.

Denote the solution to the homogeneous equation{
( ∂
∂t

− xD
a
δ )u(t, x) = 0, t ∈ R

∗+, x ∈ R,

u(0, ·) = μ(·), (2.2)
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by

J0(t, x) := (
δGa(t, ·) ∗ μ

)
(x) =

∫
R

μ(dy) δGa(t, x − y), (2.3)

where “∗” denotes the convolution in the space variable.
Let W = {Wt(A),A ∈ Bb(R), t ≥ 0} be a worthy martingale measure [33] defined on a probability space (�,F,P )

such that E(W 2
t (A)) = t

∫
A

dx, where Bb(R) is the collection of Borel sets with finite Lebesgue measure. Let (F0
t ,

t ≥ 0) be the natural filtration generated by W and augmented by the σ -field N generated by all P -null sets in F :

F0
t = σ

(
Ws(A) : 0 ≤ s ≤ t,A ∈ Bb(R)

)∨N , t ≥ 0.

Define Ft := F0
t+ =∧

s>t F0
s for t ≥ 0. In the following, we fix this filtered probability space {�,F, {Ft : t ≥ 0},P }.

Throughout of the paper, we use ‖ · ‖p to denote the Lp(�)-norm (p ≥ 1).
The rigorous meaning of the SPDE (1.1) is the integral (mild) form

u(t, x) = J0(t, x) + I (t, x),

where I (t, x) =
∫ ∫

[0,t]×R

δGa(t − s, x − y)ρ
(
u(s, y)

)
W(ds,dy), (2.4)

where the stochastic integral is the Walsh integral [33].

Definition 2.1. A process u = (u(t, x), (t, x) ∈ R
∗+ ×R) is called a random field solution to (1.1) if:

(1) u is adapted, i.e., for all (t, x) ∈ R
∗+ ×R, u(t, x) is Ft -measurable;

(2) u is jointly measurable with respect to B(R∗+ ×R) ×F ;
(3) (δG

2
a � ‖ρ(u)‖2

2)(t, x) < +∞ for all (t, x) ∈ R
∗+ × R, where “�” denotes the simultaneous convolution in both

space and time variables. Moreover, the function (t, x) �→ I (t, x) mapping R
∗+ ×R into L2(�) is continuous;

(4) u satisfies (2.4) a.s., for all (t, x) ∈ R
∗+ ×R.

Throughout the paper, we assume that the function ρ : R �→ R is Lipschitz continuous with Lipschitz constant
Lipρ > 0, and moreover, for some constants Lρ > 0 and ς ≥ 0,

∣∣ρ(x)
∣∣2 ≤ L2

ρ

(
ς2 + x2), for all x ∈ R. (2.5)

Note that the above growth condition (2.5) is a consequence of ρ being Lipschitz continuous.
Let a∗ be the dual of a, i.e., 1/a + 1/a∗ = 1. The following constant is finite:

� = δ�a := sup
x∈R

δGa(1, x), (2.6)

and in particular, 0�a = π−1�(1 + 1/a); see [9, (3.10)]. In the following, we often omit the dependence of this
constant on δ and a and simply write δ�a as �. This rule will also apply to other constants.

For all (t, x) ∈R
∗+ ×R, n ∈N and λ ∈R, define

L0(t, x;λ) := λ2
δG

2
a(t, x),

Ln(t, x;λ) := (L0 � · · · �L0)︸ ︷︷ ︸
n+1 factors L0(·,◦;λ)

, for n ≥ 1, (2.7)

K(t, x;λ) :=
∞∑

n=0

Ln(t, x;λ). (2.8)
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We apply the following conventions to K(t, x;λ):

K(t, x) := K(t, x;λ), K(t, x) := K(t, x;Lρ), K̂p(t, x) := K(t, x;4
√

pLρ), for p ≥ 2.

The following theorem is from [9, Theorem 3.1] for 1 < a < 2 and [7, Theorem 2.4] for a = 2.

Theorem 2.2 (Existence, uniqueness and moments). Suppose that μ ∈ M∗
a(R), and ρ is Lipschitz continuous and

satisfies (2.5). Then the SPDE (1.1) has a unique (in the sense of versions) random field solution {u(t, x) : (t, x) ∈
R

∗+ ×R} starting from μ. Moreover, for all even integers p ≥ 2, all t > 0 and x ∈R,

∥∥u(t, x)
∥∥2

p
≤
{

J 2
0 (t, x) + ([ς2 + J 2

0 ] �K)(t, x), if p = 2,

2J 2
0 (t, x) + ([ς2 + 2J 2

0 ] � K̂p)(t, x), if p > 2.
(2.9)

In order to use the moment bounds in (2.9), we need some estimates on K(t, x). Recall that if the partial differential
operator is the heat operator ∂

∂t
− ν

2 � where ν > 0, then

Kheat(t, x;λ) = Gν/2(t, x)

(
λ2

√
4πνt

+ λ4

2ν
eλ4t/(4ν)�

(
λ2

√
t

2ν

))
,

where �(x) is the distribution function of the standard normal random variable and Gν(t, x) = 1√
2πνt

exp(−x2/(2νt));

see [7]. If the partial differential operator is the wave operator ∂2

∂t2 − κ2� where κ > 0, then

Kwave(t, x;λ) = λ2

4
I0

(√
λ2((κt)2 − x2)

2κ

)
1{|x|≤κt},

where I0(x) is the modified Bessel function of the first kind of order 0; see [8]. Except these two cases, there are no
explicit formulas for K(t, x). The following upper bound on K(t, x) from [9, Proposition 3.2] will be useful in this
paper.

Proposition 2.3. Let γ := λ2��(1 − 1/a). For some finite constant C = C(λ) > 0,

K(t, x;λ) ≤ C

t1/a δGa(t, x)
(
1 + t1/a exp

(
γ a∗

t
))

, for all t ≥ 0 and x ∈ R. (2.10)

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we need some preparation. One may view δGa(t, x) as an operator, denoted by δGa(t)

for clarity, as follows:

δGa(t)f (x) := (
δGa(t, ·) ∗ f

)
(x).

Let I be the identity operator: If (x) = (δ ∗ f )(x) = f (x). Set

ε
δDa = δGa(ε) − I

ε
.

Let

ε
δGa(t) = exp(t ε

δDa) = e−t/ε

∞∑
n=0

(t/ε)n

n! δGa(nε) = e−t/εI + ε
δRa(t), (3.1)
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where the operator ε
δRa(t) has a density, denoted by ε

δRa(t, x), which is equal to

ε
δRa(t, x) = e−t/ε

∞∑
n=1

(t/ε)n

n! δGa(nε, x). (3.2)

One may also write the kernel of ε
δGa(t) as

ε
δGa(t, x) = e−t/εδ0(x) + ε

δRa(t, x). (3.3)

The two operators ε
δGa and δGa are close in many senses; see Appendix for more details.

Proof of Theorem 1.1. Denote φε(x) = (2πε)−1/2 exp(−x2/(2ε)). For ε > 0 and x ∈R, denote

Wε
x (t) :=

∫ t

0

∫
R

φε(x − y)W(ds,dy), for t ≥ 0.

Clearly, t �→ Wε
x (t) is a one-dimensional Brownian motion. Denote Ẇ ε

x (t) = d
dt

Wε
x (t). Then the quadratic variation

of dWε
x (t) is

d
〈
Wε

x (t)
〉= ∫

R

φ2
ε (x − y)dy dt = 1√

4πε
dt. (3.4)

Consider the following stochastic partial differential equation{
∂
∂t

uε(t, x) = ε
δDauε(t, x) + ρ(uε(t, x))Ẇ ε

x (t), t > 0, x ∈ R,

uε(0, x) = (μ ∗ δGa(ε, ·))(x), x ∈R.
(3.5)

Since ρ is globally Lipschitz continuous, (3.5) has a unique strong solution

uε(t, x) = (
μ ∗ δGa(ε, ·)

)
(x) +

∫ t

0
ds ε

δDauε(s, x) +
∫ t

0
ρ
(
uε(s, x)

)
dWε

x (s).

Step 1. Let uε,i(t, x) be the solutions to (3.5) with initial data μi , i = 1,2, respectively. Denote vε(t, x) :=
uε,2(t, x) − uε,1(t, x). We will prove that

P
(
vε(t, x) ≥ 0, for every t > 0 and x ∈ R

)= 1. (3.6)

Let an = −2(n2 + n + 2)−1, n ≥ 0. Then an ↑ 0 as n → ∞ and
∫ an

an−1
x−2 dx = n. Let ψn(x), n = 1,2, . . . , be

nonnegative continuous functions supported on ]an−1, an[ such that

0 ≤ ψn(x) ≤ 2

nx2
and

∫ an

an−1

ψn(x)dx = 1.

Define

�n(x) :=
∫ x

0
dy

∫ y

0
ψn(z)dz.

Clearly, �n(x) ∈ C2(R) with � ′′
n(x) = ψn(x), �n(x) = 0 for x ≥ 0, and −1 ≤ � ′

n(x) = ∫ x

0 ψn(z)dz ≤ 0 for all x ∈R.
Let 1(·) denote the indicator function. Here are three important properties: For all x ∈R, as n → +∞,

�n(x) ↑ −(x ∧ 0) =: �(x), � ′
n(x) ↓ −1(x < 0) and � ′

n(x)x ↑ �(x). (3.7)
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Because for each x ∈R fixed, uε(t, x) is a semi-martingale, by Itô’s formula,

�n

(
vε(t, x)

) =
∫ t

0
� ′

n

(
vε(s, x)

)[
ρ
(
uε,2(s, x)

)− ρ
(
uε,1(s, x)

)]
dWε

x (s)

+ 1

2

∫ t

0
� ′′

n

(
vε(s, x)

)[
ρ
(
uε,2(s, x)

)− ρ
(
uε,1(s, x)

)]2 1√
4πε

ds

+
∫ t

0
� ′

n

(
vε(s, x)

)
ε
δDavε(s, x)ds.

By the Lipschitz condition on ρ,

� ′′
n

(
vε(s, x)

)[
ρ
(
uε,2(s, x)

)− ρ
(
uε,1(s, x)

)]2 ≤ Lip2
ρ � ′′

n

(
vε(s, x)

)
v2
ε (s, x) ≤ 2 Lip2

ρ /n.

Hence,

E
[
�n

(
vε(t, x)

)]≤ Lip2
ρ t

n
√

4πε
+E

[
1

ε

∫ t

0
ds� ′

n

(
vε(s, x)

) ∫
R

dy δGa(ε, x − y)
[
vε(s, y) − vε(s, x)

]]
.

Now let n go to +∞, by (3.7) and the monotone convergence theorem,

E
[
�
(
vε(t, x)

)] ≤ 1

ε

∫ t

0
E
[
1
(
vε(s, x) < 0

)
vε(s, x)

]
ds

− 1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
1
(
vε(s, x) < 0

)
vε(s, y)

]
.

Notice that

−1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
1
(
vε(s, x) < 0

)
vε(s, y)

]
≤ −1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
1
(
vε(s, x) < 0, vε(s, y) < 0

)
vε(s, y)

]
= 1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
1
(
vε(s, x) < 0, vε(s, y) < 0

)∣∣vε(s, y)
∣∣]

≤ 1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
1
(
vε(s, y) < 0

)∣∣vε(s, y)
∣∣].

Then using the fact that |x|1(x < 0) = �(x), we have that

E
[
�
(
vε(t, x)

)]≤ 1

ε

∫ t

0
ds

∫
R

dy δGa(ε, x − y)E
[
�
(
vε(s, y)

)]
.

Therefore, by Gronwall’s lemma applied to supy∈RE[�(vε(s, y))], one can conclude that E[�(vε(s, y))] = 0 for
every t > 0 and x ∈ R. This proves (3.6).

Step 2. In this step, we assume that μ(dx) = f (x)dx with f ∈ L∞(R) and f (x) ≥ 0 for all x ∈ R. Denote fε(x) :=
(μ ∗ δGa(ε, ·))(x). Recall that ‖ · ‖p denotes the Lp(�) norm. We will prove that

lim
ε→0

sup
x∈R

∥∥uε(t, x) − u(t, x)
∥∥2

2 = 0, for all t > 0, (3.8)

where uε is a solution to (3.5) with uε(0, x) = fε(x) and u is a solution to (1.1).
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Fix T > 0. Notice that uε(t, x) can be written in the following mild form using the kernel of ε
δGa(t) in (3.3):

uε(t, x) = (
fε ∗ ε

δGa(t, ·)
)
(x) +

∫ t

0
e−(t−s)/ερ

(
uε(s, x)

)
dWε

x (s)

+
∫ t

0

∫
R

ε
δRa(t − s, x − y)ρ

(
uε(s, y)

)
dWε

y (s)dy,

where the last term equals to∫ t

0

∫
R

(∫
R

dz ε
δRa(t − s, x − z)ρ

(
uε(s, z)

)
φε(y − z)

)
W(ds,dy).

By (A.12) below, the boundedness of the initial data implies that for all t > 0,

At := sup
ε∈]0,1]

sup
s∈[0,t]

sup
x∈R

∥∥uε(s, x)
∥∥2

2 ∨ ∥∥u(s, x)
∥∥2

2 < +∞. (3.9)

By the linear growth condition (2.5),∥∥uε(t, x) − u(t, x)
∥∥2

2

≤ 6
(
fε ∗ ε

δGa(t, ·) − f ∗ δGa(t, ·)
)2

(x)

+ 6L2
ρ

∫ t

0
ds

1√
4πε

e−2(t−s)/ε
(
ς2 + ∥∥uε(s, x)

∥∥2
2

)
+ 6

∫ t

0
ds

∫
R

dyE

[∣∣∣∣∫
R

dz ε
δRa(t − s, x − z)

[
ρ
(
uε(s, z)

)− ρ
(
u(s, z)

)]
φε(y − z)

∣∣∣∣2]

+ 6
∫ t

0
ds

∫
R

dyE

[∣∣∣∣∫
R

dz ε
δRa(t − s, x − z)

[
ρ
(
u(s, z)

)− ρ
(
u(s, y)

)]
φε(y − z)

∣∣∣∣2]

+ 6
∫ t

0
ds

∫
R

dyE

[∣∣∣∣∫
R

dz
[
ε
δRa(t − s, x − z) − δGa(t − s, x − z)

]
ρ
(
u(s, y)

)
φε(y − z)

∣∣∣∣2]

+ 6
∫ t

0
ds

∫
R

dyE

[∣∣∣∣∫
R

dz
[
δGa(t − s, x − z) − δGa(t − s, x − y)

]
ρ
(
u(s, y)

)
φε(y − z)

∣∣∣∣2]

=: 6
6∑

n=1

In(t, x; ε).

Denote Cf := supx∈R f (x) ≥ supx∈R fε(x). Using the semigroup property, we see that

I1(t, x; ε)
≤ [(

fε ∗ ∣∣εδGa(t, ·) − δGa(t, ·)
∣∣)(x) + (

f ∗ ∣∣δGa(t + ε, ·) − δGa(t, ·)
∣∣)(x)

]
× [(

fε ∗ ε
δGa(t, ·)

)
(x) + (

f ∗ δGa(t, ·)
)
(x)

]
≤ 2C2

f

(
e−t/ε +

∫
R

dy
∣∣ε
δRa(t, y) − δGa(t, y)

∣∣+ ∫
R

dy
∣∣
δGa(t + ε, y) − δGa(t, y)

∣∣)
≤ 2C2

f

(
2e−t/ε + (

C′ + C′′)(ε/t)1/2),
where the last step is due to Lemma A.2, (A.7) and the fact that log(1 + x) ≤ √

x for all x ≥ 0, and C′ and C′′ are the
constants defined in (A.5) and (A.8). For simplicity, define C∗ := C′ + C′′.
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As for I2(t, x; ε),

I2(t, x; ε) ≤ L2
ρ

(
ς2 + At

) √
ε√

4π

(
1 − e−2t/ε

)
,

which implies

lim
ε→0

sup
0≤t≤T

sup
x∈R

I2(t, x; ε) = 0.

By the Hölder inequality and the Lipschitz continuity of the function ρ,

I3(t, x; ε) ≤ Lip2
ρ

∫ t

0
ds

∫
R

dy

∫
R

dz ε
δR

2
a(t − s, x − z)

∥∥uε(s, z) − u(s, z)
∥∥2

2 φε(y − z)

≤ Lip2
ρ

∫ t

0
ds

∫
R

dy ε
δR

2
a(s, x − y)

∥∥uε(t − s, y) − u(t − s, y)
∥∥2

2, (3.10)

and similarly,

I4(t, x; ε) ≤ Lip2
ρ

∫ t

0
ds

∫
R

dy

∫
R

dz ε
δR

2
a(s, z)

∥∥u(t − s, x − z) − u(t − s, x − y)
∥∥2

2 φε(y − z).

By Lemma A.4, for some constant C := C(T ,a, δ,μ),∥∥u(t − s, x − z) − u(t − s, x − y)
∥∥2

2 ≤ C(t − s)−1/a |y − z| + CAT |y − z|a−1.

Hence, integrating over dy first and then integrating over dz using (A.12) give that

I4(t, x; ε) ≤ Lip2
ρ C

∫ t

0
ds

∫
R

dz ε
δR

2
a(s, z)

[
(t − s)−1/a

√
2ε/π + AT 2(a−1)/2

√
π

�(a/2)ε(a−1)/2
]

≤ Lip2
ρ CCa,δ√

π

∫ t

0
dss−1/a

[
(t − s)−1/a

√
2ε + AT 2(a−1)/2�(a/2)ε(a−1)/2],

where Ca,δ is defined in Lemma A.3. Finally, integrating over ds using the Beta integral, we have that for some finite
constant C∗ := C∗(T , a, δ,μ,AT ) > 0,

I4(t, x; ε) ≤ C∗ Lip2
ρ

(
t1−2/aε1/2 + ε(a−1)/2).

By Hölder inequality, (2.5) and (3.9),

I5(t, x; ε) ≤ L2
ρ

(
ς2 + At

)∫ t

0
ds

∫
R

dy

∫
R

dzφε(y − z)
[
ε
δRa(t − s, x − z) − δGa(t − s, x − z)

]2
.

Integrate dy and enlarge the integral interval for ds from [0, t] to [0, T ],

I5(t, x; ε) ≤ L2
ρ

(
ς2 + AT

)∫ T

0
ds

∫
R

dz
[
ε
δRa(s, z) − δGa(s, z)

]2
,

and then apply (A.11) to obtain

lim
ε→0

sup
0≤t≤T

sup
x∈R

I5(t, x; ε) = 0.
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Similarly to the case of I5, we have that

I6(t, x; ε) ≤ L2
ρ

(
ς2 + AT

)∫ T

0
ds

∫
R

dy

∫
R

dzφε(y − z)
[
δGa(s, x − z) − δGa(s, x − y)

]2

= 2L2
ρ

(
ς2 + AT

)∫ T

0
ds

∫
R

dy

[
δG

2
a(s, y) − δGa(s, y)

∫
R

dz δGa(s, z)φε(y − z)

]
.

Define Fε(s, y) := δG
2
a(s, y) − δGa(s, y)

∫
R

dz δGa(s, z)φε(y − z). Clearly, limε→0 Fε(s, y) = 0 for all s > 0 and
y ∈ R. On the other hand,

Fε(s, y) ≤ δG
2
a(s, y) + δGa(s, y)s−1/a�,

where the constant � is defined in (2.6). In fact, this upper bound is integrable:∫ T

0
ds

∫
R

dy
(
δG

2
a(s, y) + δGa(s, y)s−1/a�

)
=
∫ T

0
ds
[
δGa(2s,0) + �s−1/a

]=
(

δGa(1,0)

21/a
+ �

)
a

a − 1
T 1−1/a.

Hence, the dominated convergence theorem implies that

lim
ε→0

sup
0≤t≤T

sup
x∈R

I6(t, x; ε) = 0.

Now set M(t; ε) := supy∈R ‖uε(t, y) − u(t, y)‖2
2. Fix T > 0. Combining things together, we can get that for some

constant CT > 0,

M(t; ε) ≤ CT

∫ t

0
ds(t − s)−1/aM(s; ε) + H(T ; ε) + Ĥ (t; ε),

where

H(T ; ε) := 6
∑

n=2,5,6

sup
0≤t≤T

sup
x∈R

In(t, x; ε),

Ĥ (t; ε) := 12C2
f

(
2e−t/ε + C∗(ε/t)1/2)+ 6C∗ Lip2

ρ

(
t1−2/aε1/2 + ε(a−1)/2).

Then by Chandirov’s lemma, which is a variation of Bellman’s inequality (see [3, Theorem 1.4, on p. 5]), for
0 < t ≤ T ,

M(t; ε) ≤ H(T ; ε) + Ĥ (t; ε) +
∫ t

0
ds
(
H(T ; ε) + Ĥ (s; ε))(t − s)−1/a exp

(∫ t

s

dτ(t − τ)−1/a

)
= H(T ; ε) + Ĥ (t; ε) +

∫ t

0
ds
(
H(T ; ε) + Ĥ (s; ε))(t − s)−1/a exp

(
a

a − 1
(t − s)1−1/a

)
≤ H(T ; ε)

(
1 + a

a − 1
T 1−1/a exp

(
aT 1−1/a

a − 1

))
+ Ĥ (t; ε) +

∫ t

0
dsĤ (s; ε)(t − s)−1/a exp

(
a(t − s)1−1/a

a − 1

)
.

Clearly, as ε → 0, the first two terms in the above upper bound go to zero. The integral also goes to zero by applying
the dominated convergence theorem. This proves (3.8).
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Finally, suppose that μi(dx) = fi(x)dx with fi ∈ L∞(R), i = 1,2. If f1(x) ≤ f2(x) for almost all x ∈ R, then by
Step 1 we know that vε(t, x) := uε,2(t, x) − uε,1(t, x) ≥ 0 for all t > 0 and x ∈ R, a.s. Then Step 2 implies vε(t, x)

converges to v(t, x) = u2(t, x) − u1(t, x) in L2(�) for all t > 0 and x ∈ R. Therefore, the nonnegativity of v(t, x) is
inherited from that of vε(t, x), that is,

P
(
u1(t, x) ≤ u2(t, x), for all t > 0 and x ∈R

)= 1.

Step 3. Now we assume that μi ∈ M∗
a(R). Recall the definition of ψε in (1.9). Fix ε > 0. Let uε,i , i = 1,2,

be the solutions to (1.1) starting from ([μiψε] ∗ δGa(ε, ·))(x). Denote v(t, x) = u2(t, x) − u1(t, x) and vε(t, x) =
uε,2(t, x) − uε,1(t, x). Because ψε is a continuous function with compact support on R, the initial data for uε,i(t, x)

is bounded:

sup
x∈R

∣∣([μiψε] ∗ δGa(ε, ·)
)
(x)

∣∣≤ �

ε1/a

∫
R

ψε(y)|μi |(dy) < +∞,

where � is defined in (2.6). Hence, by Step 2, we have that

P
(
vε(t, x) ≥ 0, for all t > 0 and x ∈ R

)= 1, for all ε > 0.

Applying Theorem 1.5, we obtain

P
(
v(t, x) ≥ 0, for all t > 0 and x ∈ R

)= 1.

This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.3

We need several lemmas. Lemma 4.1 below plays a role to initialize the induction procedure.

Lemma 4.1. Let d > 0. For all t > 0 and M > 0, there exist some constants 1 < m0 = m0(t,M) < ∞ and 0 < γ ≤
1/4 such that for all m ≥ m0, all s ∈ [t/(2m), t/m] and x ∈ R,(

δGa(s, ·) ∗ 1]−d,d[(·)
)
(x) ≥ γ 1]−d−M/m,d+M/m[(x). (4.1)

Proof. Let Z be a random variable with the stable density δGa(1, x). Define γ := min{P(Z ≤ 0),P (Z ≥ 0)}/2.
Clearly, 0 < γ ≤ 1/4. We first consider the case where −d − M/m ≤ x ≤ 0. Because t/2 ≤ ms ≤ t , we have

(
δGa(s, ·) ∗ 1]−d,d[(·)

)
(x) =

∫ d

−d
δGa(s, x − y)dy =

∫ (x+d)/s1/a

(x−d)/s1/a
δGa(1, z)dz

≥ P
(−d(2m)1/at−1/a ≤ Z ≤ −Mm(1−a)/at−1/a

)
.

Similarly, when 0 ≤ x ≤ d + M/m, we have(
δGa(s, ·) ∗ 1]−d,d[(·)

)
(x) ≥ P

(
Mt−1/am(1−a)/a ≤ Z ≤ d(2m)1/at−1/a

)
.

Therefore, when m is large enough, the above probabilities are bigger than γ . This completes the proof of
Lemma 4.1. �

Lemma 4.2.

(1) [9, Lemma 4.9 and (4.20)] If μ ∈Ma(R) and ρ satisfies (2.5), then for all p ≥ 2, there exists some finite constant
C := C(a, δ,Lρ, ς,μ,p) > 0 such that,

sup
x∈R

∥∥u(t, x)
∥∥2

p
≤ C(t ∨ 1)2(1+1/a)t−2/a

[
1 + t1−1/a + t exp

(
γ a∗

t
)]

,

for all t > 0, where γ := 8pLρ��(1/a∗).
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(2) If μ(dx) = c dx, c 	= 0 and ρ(0) = 0, then for some constant Q := Q(c,a,Lipρ,�) > 0,

sup
x∈R

E
(∣∣u(t, x)

∣∣p)≤ Qp exp
(
Qp(2a−1)/(a−1)t

)
, for all p ≥ 2 and t ≥ 0.

Proof. We need only to prove part (2). Notice that J0(t, x) ≡ c. Then by (2.9) and (2.10), for p ≥ 2 and p ∈N,

∥∥u(t, x)
∥∥2

p
≤ 2c2 + Cc2

∫ t

0
ds
(
s−1/a + exp

(
γ a∗
p s

))
≤ 2c2 + Cc2

(
a

a − 1
t (a−1)/a + γ −a∗

p exp
(
γ a∗
p t

))
,

where γp = 16pL2
ρ��(1/a∗) and the constant C = C(Lipρ) is defined in Proposition 2.3. Notice that log(x) ≤ βx for

all x ≥ 0 whenever β ≥ e−1. So by choosing θ = a−1
ae

γ −a∗
2 , we have that exp(θγ a∗

p t) ≥ ta/(a−1) for all t > 0. Hence,
if c 	= 0, then

∥∥u(t, x)
∥∥2

p
≤
[

2c2 + Cc2
(

a

a − 1
+ γ −a∗

2

)]
exp

(
θγ a∗

p t
)
.

Then, raise both sides by a power of p/2. This completes the proof of Lemma 4.2. �

The following lemma proves the inductive step.

Lemma 4.3. Let d > 0, t > 0 and M > 0. If ρ(0) = 0 and μ(dx) = 1[−d,d](x)dx, then there are some finite constants
Q := Q(β,Lipρ,�, t) > 0, 0 < β ≤ 1/8, and m0 > 0 such that for all m ≥ m0,

P

(
u(s, x) ≥ β1]−d−M/m,d+M/m[(x) for all

t

2m
≤ s ≤ t

m
and x ∈ R

)
≥ 1 − exp

(−Qm1−1/a
[
log(m)

]2−1/a)
.

Proof. Define S := St,m,d,M := {(s, y) : t/(2m) ≤ s ≤ t/m, |x| ≤ d + M/m}. By Lemma 4.1, for some constant
0 < β ≤ 1/8,(

μ ∗ δGa(s, ·)
)
(x) ≥ 2β1]−d−M/m,d+M/m[(x) for all s ∈ [

t/(2m), t/m
]

and x ∈ R. (4.2)

Recall that I (t, x) is the stochastic integral part of the mild solution; see (2.4). Hence,

P

(
u(s, x) < β1]−d−M/m,d+M/m[(x) for some

t

2m
≤ s ≤ t

m
and x ∈R

)
≤ P

(
I (s, x) < −β for some (s, x) ∈ S

)
≤ P

(
sup

(s,x)∈S

∣∣I (s, x)
∣∣> β

)
≤ β−p

E

[
sup

(s,x)∈S

∣∣I (s, x)
∣∣p],

where we have applied Chebyshev’s inequality in the last step. Denote τ = t/m and S′ := {(s, y) : 0 ≤ s ≤ t/m, |x| ≤
d + M/m}. By the fact that I (0, x) ≡ 0 for all x ∈R, a.s., we see that for all 0 < η < 1 − 2(a+1)

p(a−1)
,

E

[
sup

(s,x)∈S

∣∣∣∣ I (s, x)

τ (a−1)/(2a)η

∣∣∣∣p] ≤ E

[
sup

(s,x)∈S

∣∣∣∣ I (s, x) − I (0, x)

(|x − x|(a−1)/2 + |s − 0|(a−1)/(2a))η

∣∣∣∣p]

≤ E

[
sup

(s,x),(s′,x′)∈S′

∣∣∣∣ I (s, x) − I (s′, x′)
(|x − x′|(a−1)/2 + |s − s′|(a−1)/(2a))η

∣∣∣∣p]. (4.3)
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Let us find the upper bound of (4.3). By the Burkholder–Davis–Gundy inequality and [9, Proposition 4.4], for some
universal constant C1 > 0,

E
[∣∣I (s, x) − I

(
s′, x′)∣∣p]≤ C1

(∣∣x − x′∣∣(a−1)/2 + ∣∣s − s′∣∣(a−1)/(2a))p/2 sup
(t,y)∈S′

∥∥u(t, y)
∥∥p

p
,

for all (s, x) and (s′, x′) ∈ S′. Hence, by part (2) of Lemma 4.2,

sup
(t,y)∈S′

∥∥u(t, y)
∥∥p

p
≤ Qp exp

(
Qp(2a−1)/(a−1)τ

)=: Cp,τ ,

for some constant Q := Q(a,Lipρ,�) > 0 and for all p ∈ [2,∞[. Notice that we may assume that d < 1 by the
weak comparison principle and hence when m is sufficiently large, S ⊂ [0,1]2. Hence, the right-hand side of (4.3)
is bounded by the same quantity with S replaced by [0,1]2. Then by Kolmogorov’s continuity theorem (see [22,
Theorem 1.4.1] and [6, Proposition 4.2]), for some universal constant C > 0, the expectation on the right-hand side of
(4.3) is bounded above by CpCp,τ .

We consider the case where p = O([m logm]1−1/a) as m → ∞ (see (4.4) below). In this case, we have pa/(a−1)τ =
O(logm) as m → ∞ since τ = t/m. This implies that there exists some constant Q′ := Q′(β,Lipρ,�, t) such that

β−p
E

[
sup

(s,x)∈S

∣∣I (s, x)
∣∣p] ≤ Q′τ (a−1)η/(2a)p exp

(
Q′p(2a−1)/(a−1)τ

)
= Q′ exp

(
Q′p(2a−1)/(a−1)τ + (a − 1)η

2a
p log(τ )

)
.

By denoting η = θ(1 − 2
p

a+1
a−1 ) with θ ∈]0,1[, the above exponent becomes

f (p) := Q′τp(2a−1)/(a−1) + log(τ )θ(p[a − 1] − 2[a + 1])
2a

.

It is easy to see that f (p) for p ≥ 2 is minimized at

p =
(

(a − 1)2θ log(1/τ)

2a(2a − 1)Q′τ

)1−1/a

=
(

(a − 1)2θm log(m/t)

2a(2a − 1)Q′t

)1−1/a

.

Thus, for some constants A := A(β,Lipρ,�, t) and Q′′ := Q′′(β,Lipρ,�, t),

min
p≥2

f (p) ≤ f
(
p′)= −Q′′m1−1/a

[
log(m)

]2−1/a
, with p′ = A

[
m log(m)

]1−1/a
. (4.4)

This completes the proof of Lemma 4.3. �

Proof of Theorem 1.3. Let u(t, x) := u2(t, x) − u1(t, x) and ρ̃(u) := ρ(u + u1) − ρ(u1). Then u(t, x) is, in fact, a
solution to (1.1) with the nonlinear function ρ̃ and the initial data μ := μ2 − μ1. We note that ρ̃(0) = 0 and ρ̃ is a
Lipschitz continuous function with the same Lipschitz constant as for ρ. For simplicity, we will use ρ instead of ρ̃.
By the weak comparison principle (Theorem 1.1), we only need to consider the case when μ has compact support and
prove that u(t, x) > 0 for all t > 0 and x ∈ R, a.s.

Case I. We first assume that μ(dx) = f (x)dx with f ∈ C(R) and f (x) ≥ 0 for all x ∈ R. Since μ > 0, there exists
x ∈ R such that f (x) > 0. By the weak comparison principle (Theorem 1.1), we only need to consider the case where
f (x) = 1[−d,d](x) for some d > 0. This is because, if f (x) = 1[a,b](x), then we can use f (x − (a+b)/2) as our initial
function; in addition, if f (x) = c1[−d,d](x), then we can consider ũ(t, x) := cu(t, x) which is the unique solution to
(1.1) with the initial function 1[−d,d](x) and with replacing ρ(z) by cρ(z/c) which is also Lipschitz continuous with
the same Lipschitz constant as ρ(z).
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Fig. 1. Induction schema for the strong comparison principle.

Let γ ∈]0,1/4] be the constant defined in Lemma 4.1 and let β := γ /2. For any M > 0 and k = 0,1, . . . ,m − 1,
define the events

Ak :=
{
u(s, x) ≥ βk+11Sm

k
(x) for all s ∈

[
(2k + 1)t

2m
,
(k + 1)t

m

]
and x ∈R

}
,

Bk :=
{
u(s, x) ≥ βk+11Sm

k
(x) for all s ∈

[
kt

m
,
(2k + 1)t

2m

]
and x ∈R

}
, for k ≥ 1,

B0 :=
{
u

(
t

2m
,x

)
≥ β1Sm

0
(x) for all x ∈R

}
,

where

Sm
k :=

]
−d − Mk

m
,d + Mk

m

[
.

See Figure 1 for an illustration of the schema.
By Lemma 4.3, there are constants Q > 0 and m0 > 0 such that for all m ≥ m0,

P(A0) ≥ 1 − c(m),

where

c(m) := exp
(−Qm1−1/a

[
log(m)

]2−1/a)
. (4.5)

By definition, on the event Ak−1, k ≥ 1,

u

(
kt

m
,x

)
≥ βk1Sm

k−1
(x), for all x ∈ R.

Let wk(s, x) be the solution to the following SPDE:{
( ∂
∂t

− xD
a
δ )wk(s, x) = ρk(wk(s, x))Ẇk(s, x), s ∈R

∗+ := ]0,+∞[, x ∈R,

wk(0, x) = 1Sm
k−1

(x),
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where ρk(x) := β−kρ(βkx) and {Ẇk(s, x) := Ẇ (s + kt/m,x)}k≥1 is the time-shifted white noise. Note that ρk(x) is
also a Lipschitz continuous function with the same Lipschitz constant as for ρ and ρk(0) = 0. Thus, by Lemma 4.3,
we see that by the same constants Q and m0 as in (4.5), for all m ≥ m0,

P

(
wk(s, x) ≥ β1Sm

k
(x) for all s ∈

[
t

2m
,

t

m

]
and x ∈R

)
≥ 1 − c(m). (4.6)

Let v(s, x) be a solution to (1.1) with the initial data μ(dx) := βk1Sm
k−1

(x)dx, subject to the above time-shifted noise

Ẇk with the same ρk . Then v(s, x) = βkwk(s, x) a.s. for all s ≥ 0 and x ∈ R. Since u(s + kt/m,x) ≥ v(s, x) for all
x ∈ R and s ≥ 0 by the Markov property and the weak comparison principle (Theorem 1.1), (4.6) implies that

P(Ak | Fkt/m) ≥ 1 − c(m), a.s. on Ak−1 for 1 ≤ k ≤ m − 1.

Hence,

P(Ak | Ak−1 ∩ · · · ∩ A0) ≥ 1 − c(m), for all 1 ≤ k ≤ m − 1.

Furthermore, because A0 ⊆ B0, on the event A0, we see that

P(B0) ≥ P(A0) ≥ 1 − c(m).

Similarly, one can prove that

P(Bk | Bk−1 ∩ · · · ∩ B0) ≥ 1 − c(m), for all 1 ≤ k ≤ m − 1.

Then,

P

( ⋂
0≤k≤m−1

[Ak ∩ Bk]
)

≥ 1 −
(

1 − P

( ⋂
0≤k≤m−1

Ak

))
−
(

1 − P

( ⋂
0≤k≤m−1

Bk

))
≥ (

1 − c(m)
)m−1

P(A0) + (
1 − c(m)

)m−1
P(B0) − 1

≥ 2
(
1 − c(m)

)m − 1. (4.7)

Therefore, for all t > 0 and M > 0,

P
(
u(s, x) > 0 for all t/2 ≤ s ≤ t and |x| ≤ M/2

) ≥ lim
m→∞P

( ⋂
0≤k≤m−1

[Ak ∩ Bk]
)

≥ lim
m→∞ 2

(
1 − c(m)

)m − 1 = 1.

Since t and M are arbitrary, this completes the proof for Case I.
Case II. Now we assume that μ ∈ M∗

a,+(R). We only need to prove that for each ε > 0,

P
(
u(t, x) > 0 for t ≥ ε and x ∈R

)= 1. (4.8)

Fix ε > 0. Denote V (t, x) := u(t + ε, x). By the Markov property, V (t, x) solves (1.1) with the time-shifted noise
Ẇε(t, x) := Ẇ (t + ε, x) starting from V (0, x) = u(ε, x), i.e.,

V (t, x) = (
u(ε,◦) ∗ δGa(t,◦)

)
(x) +

∫ ∫
[0,t]×R

ρ
(
V (s, y)

)
δGa(t − s, x − y)Wε(ds,dy)

=: J̃0(t, x) + Ĩ (t, x). (4.9)

We first claim that

P
(
u(ε, x) = 0, for all x ∈R

)= 0. (4.10)
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Notice that by Theorem 1.6, the function x �→ u(t, x) is Hölder continuous over R a.s. The weak comparison principle
(Theorem 1.1) shows that u(t, x) ≥ 0 a.s. Hence, if (4.10) is not true, then by the Markov property and the strong
comparison principle in Case I, at all times η ∈ [0, ε], with some strict positive probability, u(η, x) = 0 for all x ∈ R,
which contradicts Theorem 1.7 as η goes to zero. Therefore, there exists a sample space �′ with P(�′) = 1 such that
for each ω ∈ �′, there exists x ∈R such that u(ε, x,ω) > 0.

Since u(ε, x,ω) is continuous at x, one can find two nonnegative constants c and β such that u(ε, y,ω) ≥
β1[x−c,x+c](y) for all y ∈R. Then Case I implies that

P
(
Vω(t, x) > 0 for all t ≥ 0 and x ∈ R

)= 1,

where Vω is the solution to (4.9) starting from u(ε, x,ω). Therefore, (4.8) is true. This completes the whole proof of
Theorem 1.3. �

5. Proof of Theorem 1.4

We first prove part (1). For any compact sets K ⊆ R
∗+ × R, one can find η > 0, T > 0 and N > 0 such that K ⊆

[η,T ] × [−N,N ]. Then choose M = 2NT/η. If μ(dx) = f (x)dx with f ∈ C(R) and f (x) ≥ 0 for all x ∈ R, then
following the proof of Theorem 1.3, from (4.7), we see that

P
(

inf
(s,x)∈K

u(s, x) < βm
)

≤ 1 − P

( ⋂
0≤k≤m−1

[Ak ∩ Bk]
)

≤ 2
[
1 − (

1 − c(m)
)m]

,

where c(m) is defined in (4.5). Because log(1 − x) ≥ −2x for 0 < x ≤ 1/2, when m is sufficiently large, so that

m exp
(−Qm1−1/a

[
log(m)

]2−1/a)≤ 1/2, (5.1)

we have that(
1 − c(m)

)m ≥ exp
(−2m exp

(−Qm1−1/a
[
log(m)

]2−1/a))
.

Since 1 − e−x ≤ x for x ≥ 0, if m is sufficiently large such that (5.1) holds, then[
1 − (

1 − c(m)
)m]≤ 2m exp

(−Qm1−1/a
[
log(m)

]2−1/a)
.

If μ ∈M∗
a,+(R), then we follow the notation of Case II in the proof of Theorem 1.3 with ε = η/2. Using the Markov

property, for each initial data u(ε, x,ω), we apply the previous case to get (1.7) with u(t, x) replaced by Vω(t − ε, x).
Because the upper bound which does not depend on ω and u(ε, x) is independent of V (t, x), (1.7) holds for V (t −
ε, x) = u(t, x). This completes the proof of part (1) of Theorem 1.4.

Now we prove part (2). Since f is a continuous function, there exists finite constant c > 0 such that f (x) ≥ c1D(x).
Without loss of generality, we assume that c = 1. Let v(t, x) be the solution to (1.1) with the initial data 1D(x)dx. By
Theorem 1.1, u(t, x) ≥ v(t, x) for all t > 0 and x ∈R, a.s. Hence, it suffices to prove that for all n ≥ 1,

P
(

inf
x∈D

inf
t∈]0,T ]v(t, x) ≤ e−n

)
≤ A exp

(−B
(
n log(n)

)(2a−1)/a)
.

We define a set of {Ft }t≥0-stopping times as follows: T0 := 0, and

Tk+1 := inf
{
s > Tk : inf

x∈D
v(s, x) ≤ e−k−1

}
,

where we use the convention that infφ = ∞.
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Similar to the proof of Theorem 1.3, let {Ẇk(t, x) : k ∈N} be time-shifted space–time white noises and let vk(t, x)

be the unique solution to (1.1) subject to the noise Ẇk , starting from vk(0, x) = e−(k−1)1D(x). Then

wk(t, x) := ek−1vk(t, x)

solves{
( ∂
∂t

− xD
a
δ )wk(t, x) = ρk(wk(t, x))Ẇk(t, x), t ∈R

∗+ := ]0,+∞[, x ∈ R,

wk(0, x) = 1D(x),

where ρk(x) := ek−1ρ(e−(k−1)x). From the definitions of the stopping times, we see that

ek−1v(Tk−1, x) ≥ 1D(x), for all x ∈R, a.s. on {Tk−1 < ∞}, for all k ≥ 1.

Therefore, by the strong Markov property and the weak comparison principle in Theorem 1.1, we obtain that on
{Tk−1 < ∞},

P

(
Tk − Tk−1 ≤ 2t

n

∣∣∣FTk−1

)
≤ P

(
sup

(t,x)∈]0,2T/n]×D

∣∣wk(t, x) − wk(0, x)
∣∣≥ 1 − 1/e

)
.

Since ρk is Lipschitz continuous with the same Lipschitz constant as ρ, a suitable form of the Kolmogorov continuity
theorem (see the arguments in the proof of Lemma 4.3) implies that for all η ∈]0,1 − 2(a + 1)/(p(a − 1))[, there
exists a finite constant Q > 0, not depending on p, n and τ , such that for all p ≥ 2, n ≥ 1, and τ ∈]0,1[,

E

[
sup

(s,x)∈]0,τ ]×D

∣∣wk(s, x) − wk(0, x)
∣∣p]≤ Qτpη(a−1)/2a exp

(
Qτp(2a−1)/(a−1)

)
. (5.2)

Letting τ := 2t/n for 0 < t < T and minimizing the right-hand side of (5.2) over p, we obtain that for some finite
constant Q′ > 0, not depending on n,

P

(
Tk − Tk−1 ≤ 2t

n

∣∣∣FTk−1

)
≤ Q′ exp

{−Q′n(a−1)/a(logn)(2a−1)/a
}
.

Therefore, we obtain the following:

P
(

inf
x∈D

inf
t∈]0,T ]v(t, x) ≤ e−n

)
≤ P {Tn ≤ t}

≤ P
(
at least �n/2�-many distinct values k ∈ {1,2, . . . , n} such that Tk − Tk−1 ≤ 2t/n

)
≤
(

n

�n/2�
)

c
�n/2�
1 exp

{−c2�n/2�n(a−1)/a(logn)(2a−1)/a
}
.

This completes the proof of Theorem 1.4.

6. Proof of Theorem 1.5

Fix ε > 0. By Theorems 2.2, both u(t, x) and uε(t, x) are well-defined solutions to (1.1). By Lipschitz continuity of
ρ and the moment formulas (2.9),∥∥u(t, x) − uε(t, x)

∥∥2
2 ≤ [(

(μψε) ∗ δGa(ε, ·) ∗ δGa(t, ·)
)
(x) − (

μ ∗ δGa(t, ·)
)
(x)

]2

+ Lip2
ρ

∫ t

0
ds

∫
R

dy
∥∥u(s, y) − uε(s, y)

∥∥2
2 δG

2
a(t − s, x − y).
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Denote the first part on the above upper bound as Iε(t, x). Let K̃(t, x) := K(t, x;Lipρ) and denote fε(t, x) :=
‖u(t, x) − uε(t, x)‖2

2. Then formally,

(fε � K̃)(t, x) ≤ (Iε � K̃)(t, x) + Lip2
ρ

(
fε � δG

2
a � K̃

)
(t, x).

Using the fact that (Lip2
ρ δG

2
a � K̃)(t, x) = K̃(t, x) − Lip2

ρ δG
2
a(t, x), one has that(

fε � δG
2
a

)
(t, x) ≤ Lip−2

ρ (Iε � K̃)(t, x).

Hence, it reduces to show that

lim
ε→0

(Iε � K̃)(t, x) = 0, for all t > 0 and x ∈ R. (6.1)

We first assume that a ∈]1,2[. Notice that

Iε(t, x) = [(
(μψε) ∗ [δGa(t + ε, ·) − δGa(t, ·)

])
(x) + ([μψε − μ] ∗ δGa(t, ·)

)
(x)

]2
.

By [9, (4.3)], for 0 < t ≤ T and x ∈ R,(|μψε| ∗ δGa(t, ·)
)
(x) ≤ (|μ| ∗ δGa(t, ·)

)
(x) ≤ CT t−1/a, (6.2)

with CT := AaKa,0(T ∨ 1)1+1/a , where Aa is defined as

Aa := sup
y∈R

∫
R

|μ|(dz)

1 + |y − z|1+a
. (6.3)

Hence, if 0 < t + ε ≤ T , then

Iε(t, x) ≤ 4CT t−1/a
[(|μψε| ∗

∣∣
δGa(t + ε, ·) − δGa(t, ·)

∣∣)(x) + (|μψε − μ| ∗ δGa(t, ·)
)
(x)

]
.

Now use the upper bound on K̃(t, x) in (2.10),

(Iε � K̃)(t, x) ≤ 2CT C′C′
T

∫ t

0
dss−1/a(t − s)−1/a

[
g1(t, s, ε, x) + g2(t, x, ε, x)

]
, (6.4)

where C′ := C′(a, δ,Lipρ) is defined in Proposition 2.3, C′
T = 1 + T 1/a exp((Lip2

ρ ��(1/a∗))a∗
T ), 1/a∗ + 1/a = 1,

and

g1(t, s, ε, x) = (|μψε| ∗
∣∣
δGa(s + ε, ·) − δGa(s, ·)

∣∣ ∗ δGa(t − s, ·))(x),

g2(t, s, ε, x) = (|μψε − μ| ∗ δGa(s, ·) ∗ δGa(t − s, ·))(x).

By the semigroup property and the dominated convergence theorem,

g2(t, s, ε, x) = (|μψε − μ| ∗ δGa(t, ·)
)
(x) → 0, as ε → 0.

Clearly, g2(t, s, ε, x) ≤ 2(μ ∗ δGa(t, ·))(x). Again, by the dominated convergence theorem and by bounding
δGa(t + ε, ·) using [9, (4.3)], one can show that limε→0 g1(t, s, ε, x) = 0. Then by the semigroup property and (6.2),
for 0 < t + ε ≤ T ,

g1(t, s, ε, x) ≤ (|μ| ∗ (δGa(s + ε, ·) + δGa(s, ·)
) ∗ δGa(t − s, ·))(x)

= (|μ| ∗ δGa(t + ε, ·))(x) + (|μ| ∗ δGa(t, ·)
)
(x)

≤ CT

(
(t + ε)−1/a + t−1/a

)≤ 2CT t−1/a.
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Hence, both upper bounds on g1 and g2 are integrable over ds in (6.4). Therefore, by another application of the
dominated convergence theorem, we have proved (6.1). Since both functions fε(t, x) and δGa(t, x) are nonnegative
and the support of δGa(t, x) is over R, we can conclude that limε→0 fε(t, x) = 0 for almost all t > 0 and x ∈R.

When a = 2, one can apply the dominated convergence theorem to show that Iε(t, x) → 0 as ε → 0. Another
application of the dominated convergence theorem shows that (6.1) is true. The rest is same as the previous case. We
leave the details for interested readers. This completes the proof of Theorem 1.5.

7. Proof of Theorem 1.6

Without loss of generality, we assume that μ ≥ 0. Let u(t, x) be the solution to (1.1) starting from μ ∈ Ma(R).
Fix T > 0 and ε ∈]0, (T /2) ∧ 1]. Denote V (t, x) := u(t + ε, x). By the Markov property, V (t, x) solves (1.1) with
the time-shifted noise Ẇε(t, x) := Ẇ (t + ε, x) starting from V (0, x) = u(ε, x). Recall the integral form V (t, x) =
J̃0(t, x) + Ĩ (t, x) in (4.9).

Time increments

Recall that u(t, x) = J0(t, x) + I (t, x). Let 0 < ε ≤ t ≤ t ′ ≤ T − ε. So∥∥I (t + ε, x) − I
(
t ′ + ε, x

)∥∥2
p

≤ 2
∥∥u(t + ε, x) − u

(
t ′ + ε, x

)∥∥2
p

+ 2
∣∣J0(t + ε, x) − J0

(
t ′ + ε, x

)∣∣2,
with ∥∥u(t + ε, x) − u

(
t ′ + ε, x

)∥∥2
p

= ∥∥V (t, x) − V
(
t ′, x

)∥∥2
p

≤ 2
∥∥Ĩ (t, x) − Ĩ

(
t ′, x

)∥∥2
p

+ 2
∥∥J̃0(t, x) − J̃0

(
t ′, x

)∥∥2
p
.

Notice that for all p ≥ 2, by the Burkholder–Davis–Gundy inequality (see [7, Lemma 3.3]),∥∥Ĩ (t, x) − Ĩ
(
t ′, x

)∥∥2
p

≤ 2z2
pL2

ρI1
(
t, t ′, x

)+ 2z2
pL2

ρI2
(
t, t ′, x

)
,

where zp ≤ 2
√

p and z2 = 1, and

I1
(
t, t ′, x

)=
∫ ∫

[0,t]×R

ds dy
(
δGa(t − s, x − y) − δGa

(
t ′ − s, x − y

))2(
ς2 + ∥∥V (s, y)

∥∥2
p

)
,

I2
(
t, t ′, x

)=
∫ ∫

[t,t ′]×R

ds dyδG
2
a

(
t ′ − s, x − y

)(
ς2 + ∥∥V (s, y)

∥∥2
p

)
.

By part (2) of Lemma 4.2, for some finite constant Q := Q(a, δ,Lρ, ς,μ,p, ε, T ) > 0,

sup
(s,y)∈[0,t]×R

∥∥V (s, y)
∥∥2

p
= sup

(s,y)∈[ε,t+ε]×R

∥∥u(s, y)
∥∥2

p
≤ Q.

Then apply [9, Proposition 4.4] to see that for some finite constant C1 = C1(a, δ) > 0,∥∥Ĩ (t, x) − Ĩ
(
t ′, x

)∥∥2
p

≤ C1z
2
pL2

ρQ|t ′ − t |1−1/a. (7.1)

By Minkowski’s integral inequality and (A.7) below, for some finite constant C2 := C2(a) > 0,

∥∥J̃0(t, x) − J̃0
(
t ′, x

)∥∥2
p

≤ sup
y∈R

∥∥u(ε, y)
∥∥2

p

(∫
R

dy
∣∣
δGa(t, y) − δGa

(
t ′, y

)∣∣)2

≤ C2Q
[
log

(
t ′/t

)]2 ≤ C2t
−2Q

∣∣t ′ − t
∣∣2,
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where in the last step, we have applied the inequality log(1 + x) ≤ x for x > −1. Because |t ′ − t | ≤ T (a+1)/(2a)|t ′ −
t |(a−1)/(2a) and t ≥ ε, we have that∥∥J̃0(t, x) − J̃0

(
t ′, x

)∥∥2
p

≤ C2ε
−2T (a+1)/aQ

∣∣t ′ − t
∣∣(a−1)/a

. (7.2)

Similarly,

∣∣J0(t + ε, x) − J0
(
t ′ + ε, x

)∣∣2 ≤ sup
y∈R

J 2
0 (ε, y)

(∫
R

dy
∣∣
δGa(t, y) − δGa

(
t ′, y

)∣∣)2

≤ C2ε
−2T (a+1)/aQ

∣∣t ′ − t
∣∣(a−1)/a

.

Space increments

Fix t ≥ ε. Let x, x′ ∈ [−T ,T ]. Then∥∥I (t + ε, x) − I
(
t + ε, x′)∥∥2

p
≤ 2

∥∥u(t + ε, x) − u
(
t + ε, x′)∥∥2

p

+ 2
∣∣J0(t + ε, x) − J0

(
t + ε, x′)∣∣2,

with ∥∥u(t + ε, x) − u
(
t + ε, x′)∥∥2

p
≤ 2

∥∥Ĩ (t, x) − Ĩ
(
t, x′)∥∥2

p
+ 2

∥∥J̃0(t, x) − J̃0
(
t, x′)∥∥2

p
.

For p ≥ 2, by the Burkholder–Davis–Gundy inequality and [9, Proposition 4.4],

∥∥Ĩ (t, x) − Ĩ
(
t, x′)∥∥2

p
≤ 2z2

pL2
ρ

∫ ∫
[0,t]×R

ds dy
(
δGa(t − s, x − y) − δGa

(
t − s, x′ − y

))2(
ς2 + ∥∥V (s, y)

∥∥2
p

)
≤ 2z2

pL2
ρQ

∣∣x′ − x
∣∣a−1

.

By the Minkowski’s integral inequality and (A.21), for some finite constant C3 := C3(a) > 0,

∥∥J̃0(t, x) − J̃0
(
t, x′)∥∥2

p
≤ sup

y∈R

∥∥u(ε, y)
∥∥2

p

(∫
R

dy
∣∣
δGa(t, x − y) − δGa

(
t, x′ − y

)∣∣)2

≤ C3Qt−1/a
∣∣x′ − x

∣∣≤ C3Qε−1/a(2T )2−a
∣∣x′ − x

∣∣a−1
. (7.3)

Similarly,

∣∣J0(t + ε, x) − J0
(
t + ε, x′)∣∣2 ≤ sup

y∈R
J 2

0 (ε, y)

(∫
R

dy
∣∣
δGa(t, x) − δGa

(
t, x′)∣∣)2

≤ C3Qε−1/a(2T )2−a
∣∣x′ − x

∣∣a−1
.

Finally, combining the two cases, we see that for all compact sets D ⊆ R
∗+ × R, one can find T > 0, ε ∈]0,

(T /2) ∧ 1], such that D ⊆ K(ε,T ) := [2ε,T ] × [−T ,T ]. There is some finite constant Q′ := Q′(a, δ,Lρ, ς,μ,p,

ε,T ) > 0 such that for all (t, x) and (t ′, x′) ∈ D,∥∥I (t, x) − I
(
t ′, x′)∥∥2

p
≤ Q′(∣∣t ′ − t

∣∣1−1/a + ∣∣x′ − x
∣∣a−1)

.

Then the Hölder continuity follows from Kolmogorov’s continuity theorem (see [22, Theorem 1.4.1] and [6, Proposi-
tion 4.2]). Note that J0(t, x) belongs to C∞(R∗+ ×R) (see [9, Lemma 4.9]). This completes the proof of Theorem 1.6.
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8. Proof of Theorem 1.7

The case when a = 2 is proved in [6, Proposition 3.4]. Assume that 1 < a < 2. Fix φ ∈ Cc(R). For simplicity, we only
prove the case where ρ(u) = λu and μ ≥ 0. As in the proof [6, Proposition 3.4], we only need to prove that

lim
t→0+

∫
R

dxI (t, x)φ(x) = 0 in L2(�).

Denote L(t) := ∫
R

I (t, x)φ(x)dx. By the stochastic Fubini theorem (see [33, Theorem 2.6, p. 296]), whose assump-
tions are easily checked,

L(t) =
∫ t

0

∫
R

(∫
R

dx δGa(t − s, x − y)φ(x)

)
ρ
(
u(s, y)

)
W(ds,dy).

Hence, by Itô’s isometry,

E
[
L(t)2]= λ2

∫ t

0
ds

∫
R

dy

(∫
R

dx δGa(t − s, x − y)φ(x)

)2∥∥u(s, y)
∥∥2

2.

Assume that t ≤ 1. Since for some constant C > 0, |φ(x)| ≤ CδGa(1, x) for all x ∈ R, we can apply the semigroup
property to get

E
[
L(t)2]≤ C2λ2�

∫ t

0
ds

1

(t + 1 − s)1/a

∫
R

dy δGa(t + 1 − s, y)
∥∥u(s, y)

∥∥2
2,

where the constant � is defined in (2.6). Apply the moment formula (2.9),

E
[
L(t)2]≤ C2λ2�

[
L1(t) + L2(t)

]
,

with

L1(t) :=
∫ t

0
ds

1

(t + 1 − s)1/a

∫
R

dyJ 2
0 (s, y) δGa(t + 1 − s, y),

and

L2(t) :=
∫ t

0
ds

1

(t + 1 − s)1/a

∫
R

dy
(
J 2

0 �K
)
(s, y) δGa(t + 1 − s, y).

We first consider L1(t). By [9, (4.20)], for some constant C1 := C1(a, δ,μ) > 0, J0(t, x) ≤ C1t
−1/a . Thus,

L1(t) ≤ C1

∫ t

0
ds

1

(t + 1 − s)1/as1/a

∫
R

dyJ0(s, y) δGa(t + 1 − s, y)

= C1J0(t + 1,0)

∫ t

0
ds

1

(t + 1 − s)1/as1/a

≤ C1J0(t + 1,0)

∫ t

0
ds

1

(1 − s)1/as1/a
→ 0, as t → 0.

The case for L2(t) can be proved in a similar way, where one needs to apply (2.10). We leave the details for interested
readers. This completes the proof of Theorem 1.7.
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Appendix

Recall the kernel function ε
δRa(t, x) defined in (3.2). The following two lemmas A.2 and A.3 below show that ε

δRa(t, x)

is an approximation of δGa(t, x). The proofs of both Lemmas depend on Lemma A.1 below.

Lemma A.1. For all b ∈ R,

lim
z→∞ e−zzb+1

∞∑
k=1

zk−1

k!kb
= 1. (A.1)

If b ≥ −1, then

Cb := sup
z≥0

e−zzb+1
∞∑

k=1

zk−1

k!kb
< +∞. (A.2)

Note that when b ∈ N, the series in (A.1) converges to the generalized hypergeometric function (see [29, Chap-
ter 16]):

∞∑
k=1

zk−1

k!kb
= bFb

(
(1, . . . ,1︸ ︷︷ ︸

b+1

), (2, . . . ,2︸ ︷︷ ︸
b+1

); z), for b ∈N and z ∈C.

Proof of Lemma A.1. Clearly, the series converges on z ∈ C and it defines an entire function. We first assume that
b ∈ N. We will prove (A.1) by induction. Clearly, the case b = 0 is true. Suppose that (A.1) is true for b. Now let us
consider the case b + 1: Applying l’Hôpital’s rule and the induction assumption, we obtain

lim
z→∞ e−zzb+2

∞∑
k=1

zk−1

k!kb+1
= lim

z→∞

∑∞
k=1 zk/(k!kb+1)

ez/zb+1
= lim

z→∞

∑∞
k=1 zk−1/(k!kb)

ez(zb+1 − (b + 1)zb)/z2(b+1)

= lim
z→∞ e−zzb+1

∞∑
k=1

zk−1

k!kb
= 1. (A.3)

This proves Lemma A.1 for b ∈N.
Now assume that 0 < b < 1. Because the function f (x) = xb for x ≥ 1 is concave, we have that for all k ≥ 1 and

z ≥ 1,∣∣zb − kb
∣∣≤ b

(
zb−1 ∨ kb−1)|k − z| ≤ b

(
zb−1 + kb−1)|k − z|.

Hence, for all z ≥ 1 and k ≥ 1,∣∣∣∣ 1

kb
− 1

zb

∣∣∣∣= |zb − kb|
zbkb

≤ b|k − z|
(

1

zkb
+ 1

zbk

)
≤ b|k − z|

(
1

zk1/2
+ 1

z1/2k

)
. (A.4)

Thus, for z ≥ 1, by Cauchy–Schwartz inequality and (A.18),∣∣∣∣∣
∞∑

k=2

zk

k!kb
− 1

zb

(
ez − 1 − z

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=2

zk

k!
(

1

kb
− 1

zb

)∣∣∣∣∣
≤ b

z

∞∑
k=2

zk

k!
|k − z|√

k
+ b√

z

∞∑
k=2

zk

k!
|k − z|

k

≤ b

z

( ∞∑
k=0

zk

k! |k − z|2
)1/2( ∞∑

k=1

zk

k!k

)1/2
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+ b√
z

( ∞∑
k=0

zk

k! |k − z|2
)1/2( ∞∑

k=1

zk

k!k2

)1/2

= b

z

(
ezz2

∞∑
k=1

zk−1

k!k

)1/2

+ b

z

(
ezz3

∞∑
k=1

zk−1

k!k2

)1/2

.

Hence, by the previous proof for the case b ∈N, and because b < 1,

lim
z→∞ zbe−z

∣∣∣∣∣
∞∑

k=2

zk

k!kb
− 1

zb

(
ez − 1 − z

)∣∣∣∣∣≤ lim
z→∞

2b

z1−b
= 0.

Therefore,

lim
z→∞ zbe−z

∞∑
k=2

zk

k!kb
= lim

z→∞ zbe−z 1

zb

(
ez − 1 − z

)= 1.

Now assume that b < 0. Let c ∈]0,1[ and n ∈ N such that b + n = c. Then apply l’Hôpital’s rule n times as in
(A.3),

1 = lim
z→∞ e−zzc+1

∞∑
k=1

zk−1

k!kc
= lim

z→∞ e−zzc
∞∑

k=1

zk−1

k!kc−1
= · · · = lim

z→∞ e−zzc−n+1
∞∑

k=1

zk−1

k!kc−n
.

Similarly, if b ≥ 1, then let c ∈]0,1[ and n ∈ N such that b = c + n. Then apply l’Hôpital’s rule n times as in (A.3),

lim
z→∞ e−zzb+1

∞∑
k=1

zk−1

k!kb
= lim

z→∞ e−zzb
∞∑

k=1

zk−1

k!kb−1
= · · · = lim

z→∞ e−zzb−n+1
∞∑

k=1

zk−1

k!kb−n
= 1.

This proves (A.1) for all b ∈R.

Finally, (A.2) follows from the fact that the function f (z) = zb+1e−z
∑∞

k=1
zk−1

k!kb is continuous over R+ ∪ {+∞}
with f (∞) = 1 and |f (0)| < ∞ if b ≥ −1 (actually, f (0) = 0 if b > −1 and f (0) = 1 if b = −1). This completes the
proof of Lemma A.1. �

Lemma A.2. There exists a finite constant C > 0 such that∫
R

dx
∣∣ε
δRa(t, x) − δGa(t, x)

∣∣≤ e−t/ε + C

(
ε

t

)1/2

, for all ε > 0 and t > 0,

where the constant C can be chosen as

C = 1

a

(
1 + Ka,1�

(
a

a + 2

)
�

(
a + 4

a + 2

))[
sup
z≥0

e−zz
(
4z2 + 7z + 1

) ∞∑
k=1

zk−1

k!k2

]1/2

, (A.5)

with the constant Ka,1 defined in [9, (4.3)].

Proof. By the scaling property of δGa(t, x) and [9, (4.3)],∣∣∣∣ ∂

∂t
δGa(t, x)

∣∣∣∣ =
∣∣∣∣ ∂

∂t
t−1/a

δGa

(
1, t−1/ax

)∣∣∣∣
=
∣∣∣∣− 1

at

(
δGa(t, x) + x

∂δGa(t, x)

∂x

)∣∣∣∣
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≤ 1

at

(
δGa(t, x) +

∣∣∣∣x ∂δGa(t, x)

∂x

∣∣∣∣)
≤ 1

at

[
δGa(t, x) + t−2/a Ka,1|x|

1 + |t−1/ax|2+a

]
. (A.6)

Thus, for 0 < t ≤ t ′,∫
R

dx
∣∣
δGa

(
t ′, x

)− δGa(t, x)
∣∣ ≤

∫
R

dx

∫ t ′

t

ds

∣∣∣∣ ∂

∂t
δGa(s, x)

∣∣∣∣
≤
∫ t ′

t

ds
1

as

(
1 +

∫
R

dy
Ka,1|y|

1 + |y|2+a

)
≤ C′ log

(
t ′

t

)
, (A.7)

where

C′ := 1

a

(
1 +

∫
R

dy
Ka,1|y|

1 + |y|2+a

)
= 1

a

(
1 + Ka,1�

(
a

a + 2

)
�

(
a + 4

a + 2

))
, (A.8)

and the integral in (A.8) is evaluated by Lemma A.5. Notice that

∣∣ε
δRa(t, x) − δGa(t, x)

∣∣≤ e−t/ε
δGa(t, x) + e−t/ε

∞∑
k=1

(
t

ε

)k 1

k!
∣∣
δGa(t, x) − δGa(kε, x)

∣∣.
By the above inequality, we have that∫

R

dx
∣∣ε
δRa(t, x) − δGa(t, x)

∣∣≤ e−t/ε + C′e−t/ε
∞∑

k=1

(
t

ε

)k 1

k!
∣∣log(kε/t)

∣∣.
Denote the summation over k in above upper bound by I (t/ε). Because the function x �→ log(x) is concave,
| log(t ′/t)| ≤ |t ′ − t |( 1

t ′ ∨ 1
t
) ≤ |t ′ − t |( 1

t ′ + 1
t
). So, by letting z = t/ε,

I (z) ≤
∞∑

k=1

zk

k! |k − z|
(

1

k
+ 1

z

)
=

∞∑
k=1

zk−1

k!k
∣∣k2 − z2

∣∣.
Then by Cauchy-Schwartz inequality,

I (z) ≤
( ∞∑

k=1

zk−1

k!k2

)1/2( ∞∑
k=1

zk−1

k!
[
k2 − z2]2

)1/2

.

Notice that

∞∑
k=1

zk−1

k!
[
k2 − z2]2 = ez

(
4z2 + 7z + 1

)− z3 ≤ ez
(
4z2 + 7z + 1

)
. (A.9)

To prove the equality in (A.9), one can write k2 = P 2
k + P 1

k and k4 = P 4
k + 6P 3

k + 7P 2
k + P 1

k , where P n
k := k(k −

1) · · · (k −n+ 1). Hence, (k2 − z2)2 = P 4
k + 6P 3

k + (7 − 2z2)P 2
k + (1 − 2z2)P 1

k + z4. Then use the fact that for n ≥ 1,∑∞
k=1

zk

k! P
n
k = ezzn.

Therefore,

I (z)e−z ≤
(

e−zz
(
4z2 + 7z + 1

) ∞∑
k=1

zk−1

k!k2

)1/2
1√
z
.
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By Lemma A.1, the function f (z) = e−zz(4z2 + 7z + 1)
∑∞

k=1
zk−1

k!k2 is continuous over R+ ∪ {+∞} with f (0) = 0
and f (∞) = 4. Thus, supz≥0 f (z) < +∞. This completes the proof of Lemma A.2. �

Lemma A.3. We have that

lim
ε→0

ε
δRa(t, x) = δGa(t,0)1{x=0}, (A.10)

lim
ε→0

∫ t

0
ds

∫
R

dx
[
ε
δRa(s, x) − δGa(s, x)

]2 = 0, for all t > 0, (A.11)

and there is a nonnegative constant Ca,δ < +∞ such that∫
R

dx ε
δR

2
a(t, x) ≤ Ca,δt

−1/a, for all t > 0. (A.12)

Proof. Fix t > 0. Denote A := δGa(1,0). Clearly,∫ t

0
ds

∫
R

dx
[
ε
δRa(s, x) − δGa(s, x)

]2 = I1(t, ε) − 2I2(t, ε) + I3(t),

where

I1(t, ε) =
∫ ∫

[0,t]×R

ds dx ε
δR

2
a(s, x), (A.13)

I2(t, ε) =
∫ ∫

[0,t]×R

ds dx ε
δRa(s, x)δGa(s, x), (A.14)

I3(t) =
∫ ∫

[0,t]×R

ds dx δG
2
a(s, x). (A.15)

By the semigroup property and scaling property [9, (4.1)], we have that

I3(t) =
∫ t

0
ds δGa(2s,0) = A

∫ t

0
(2s)−1/a ds = aA

21/a(a − 1)
t1−1/a. (A.16)

Step 1. We first calculate I1. Use the semigroup property and scaling property [9, (4.1)]:

I1(t, ε) =
∫ t

0
dse−2s/ε

∞∑
n=1

∞∑
m=1

(
s

ε

)n+m 1

n!m! δGa

(
(n + m)ε,0

)
= A

∫ t

0
dse−2s/ε

∞∑
n=1

∞∑
m=1

(
s

ε

)n+m 1

n!m!(n + m)1/aε1/a
.

Then by change of variables u = s/ε and let z = t/ε, we have that

I1(t, ε) = At1−1/a 1

z1−1/a

∫ z

0
due−2u

∞∑
n,m=1

un+m

n!m!(n + m)1/a
.

By l’Hôpital’s rule,

I1(t) := lim
ε→0

I1(t, ε) = aA

a − 1
t1−1/a lim

z→∞ z1/ae−2z
∞∑

n,m=1

zn+m

n!m!(n + m)1/a
.
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Because
∑k−1

n=1
1

n!(k−n)! = 1
k! (2

k − 2),

∞∑
n,m=1

zn+m

n!m!(n + m)1/a
=

∞∑
k=2

zk

k1/a

k−1∑
n=1

1

n!(k − n)! =
∞∑

k=2

zk

k!k1/a

(
2k − 2

)
.

Hence,

I1(t) = aA

a − 1
t1−1/a lim

z→∞ z1/ae−2z
∞∑

k=2

zk

k!k1/a

(
2k − 2

)= aA

21/a(a − 1)
t1−1/a, (A.17)

where the last equality is due to Lemma A.1 with b = 1/a ∈ [1/2,1].
Step 2. In this step, we calculate I2(t) := limε→∞ I2(t, ε). Similarly to the Step 1, use the semigroup property and

scaling property [9, (4.1)], and then change the variables u = s/ε and z = t/ε,

I2(t, ε) =
∫ t

0
dse−s/ε

∞∑
n=1

(
s

ε

)n 1

n! δGa(s + nε,0) = At1−1/a 1

z1−1/a

∫ z

0
due−u

∞∑
n=1

un

n!(u + n)1/a
.

By l’Hôpital’s rule,

I2(t) = aA

a − 1
t1−1/a lim

z→∞ z1/ae−z

∞∑
n=1

zn

n!(z + n)1/a
.

Apply inequality (A.4) below with b = 1/a ∈ [1/2,1],∣∣∣∣ 1

(z + n)1/a
− 1

(2z)1/a

∣∣∣∣≤ 1

a
|n − z|

(
1

2z
√

n + z
+ 1

(n + z)
√

2z

)
≤ 1 + √

2

2a

|n − z|
z3/2

,

for z ≥ 1 and n ≥ 1. Notice that (see the proof of (A.9)),

∞∑
n=0

zn

n! |n − z|2 = ezz. (A.18)

By Cauchy-Schwartz inequality and (A.18), for z ≥ 1,∣∣∣∣∣
∞∑

n=1

zn

n!(z + n)1/a
− 1

(2z)1/a

(
ez − 1

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

zn

n!
(

1

(z + n)1/a
− 1

(2z)1/a

)∣∣∣∣∣
≤ 1 + √

2

2az3/2

∞∑
n=1

zn

n! |n − z|

≤ 1 + √
2

2az3/2

( ∞∑
n=0

zn

n! |n − z|2
)1/2( ∞∑

n=0

zn

n!

)1/2

= 1 + √
2

2az
ez.

Therefore,

I2(t) = aA

a − 1
t1−1/a lim

z→∞ z1/ae−z 1

(2z)1/a

(
ez − 1

)= aA

21/a(a − 1)
t1−1/a. (A.19)

Finally, (A.11) is proved by combining (A.16), (A.17) and (A.19).
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Step 3. Now we prove (A.10). Clearly, if x 	= 0, then limε→0
ε
δRa(t, x) = 0. Otherwise, by Lemma A.1 with b =

1/a,

lim
ε→0

ε
δRa(t,0) = A

t1/a
lim

z→∞ z1/ae−z

∞∑
k=1

zk

k!k1/a
= δGa(t,0).

Step 4. As for (A.12), denote I (t; ε) = ∫
R

dx ε
δR

2
a(t, x). Following the arguments in Step 1,

I (t, ε) ≤ A

(2t)1/a
sup
z∈R+

z1/ae−z

∞∑
k=2

zk

k!k1/a
. (A.20)

Clearly, the function f (z) = ∑∞
k=2

zk

k!k1/a is an entire function over C. By Lemma A.1 and limz→0 z1/ae−zf (z) = 0,
we know that the supremum in (A.20), which depends only on a, is finite. This completes the proof of Lemma A.3

�

Lemma A.4. If μ(dx) = f (x)dx with f ∈ L∞(R), then for all 0 < t ≤ T and x, y ∈R,∥∥u(t, x) − u(t, y)
∥∥2

2 ≤ Ct−1/a|x − y| + AT C1|x − y|a−1,

where Ka,1 is defined in [9, (4.3)], C1 := C1(a, δ) is defined in [9, Proposition 4.4], and

C := 8Ka,1�

(
a + 1

a + 2

)
�

(
a + 3

a + 2

)
sup
x∈R

[
f (x)

]2
, AT := sup

s∈[0,T ]
sup
x∈R

∥∥ρ(u(s, x)
)∥∥2

2.

Proof. By Itô’s isometry,

∥∥u(t, x) − u(t, y)
∥∥2

2 = [
J0(t, x) − J0(t, y)

]2 +
∫ t

0
ds

∫
R

dz
∥∥ρ(u(s, z)

)∥∥2
2

× [
δGa(t − s, x − z) − δGa(t − s, y − z)

]2
.

Denote Cf := supx∈R |f (x)| and fix 0 < t < T . Then

∥∥u(t, x) − u(t, y)
∥∥2

2 ≤ 2C2
f

∫
R

dz
∣∣
δGa(t, x − z) − δGa(t, y − z)

∣∣
+ AT

∫ t

0
ds

∫
R

dz
(
δGa(s, x − z) − δGa(s, y − z)

)2
.

By [9, Proposition 4.4], for some constant C1 := C1(a, δ), the second part of the above upper bound is bounded by
AT C1|x − y|a−1. As for the first part, notice that by [9, (4.3)], for all t > 0 and x, y ∈ R,

∣∣
δGa(t, x) − δGa(t, y)

∣∣ =
∣∣∣∣∫ y

x

∂

∂x
δGa(t, z)dz

∣∣∣∣
≤
∫ y

x

∣∣∣∣ ∂

∂x
δGa(t, z)

∣∣∣∣dz

≤ Ka,1t
−2/a

∫ y

x

dz

1 + |t−1/az|2+a

≤ Ka,1t
−2/a |x − y|

1 + (|t−1/ax| ∧ |t−1/ay|)2+a
.
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Thus,∫
R

dz
∣∣
δGa(t, x − z) − δGa(t, y − z)

∣∣
≤ Ka,1t

−2/a

∫
R

|x − y|dz

1 + (|t−1/a(x − z)| ∧ |t−1/a(y − z)|)2+a

≤ Ka,1t
−2/a|x − y|

∫
R

dz

[
1

1 + |t−1/a(x − z)|2+a
+ 1

1 + |t−1/a(y − z)|2+a

]
= 2Ka,1t

−2/a|x − y|
∫
R

dz

1 + |t−1/az|2+a
= 2Ka,1t

−1/a|x − y|
∫
R

dz

1 + |z|2+a
.

Hence, by letting

Ca :=
∫
R

dz

1 + |z|2+a
= 2�

(
a + 1

a + 2

)
�

(
a + 3

a + 2

)
,

where the integral is evaluated by Lemma A.5, we have that∫
R

dz
∣∣
δGa(t, x − z) − δGa(t, y − z)

∣∣≤ 2Ka,1Cat
−1/a|x − y|, for all x, y ∈R. (A.21)

This completes the proof of Lemma A.4. �

Lemma A.5. For a > 0 and b ∈]−1, a + 1[, ∫∞
0 dy

yb

1+y2+a = 1
b+1�(a−b+1

a+2 )�(a+b+3
a+2 ).

Proof. Let 1 + y2+a = r−1. Then dy = − 1
a+2 r−(a+3)/(a+2)(1 − r)−(a+1)/(a+2) dr . So,∫ 1

0
drrr−b/(a+2)(1 − r)b/(a+2) 1

a + 2
r−(a+3)/(a+2)(1 − r)−(a+1)/(a+2)

= 1

a + 2

∫ 1

0
drr(a+1−b)/(a+2)−1(1 − r)(b+1)/(a+2)−1.

Then apply the Beta integral and use the recursion x�(x) = �(x + 1). �
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